Final - Computer Science 2 (2020-21) Time: 3 hours.

Attempt all questions, giving proper explanations. You may quote any result proved in class without proof.

- 1. How is the number 22.5 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [4 marks]
- 2. (a) How many floating point numbers are there in [0, 1]? [2 marks]
 - (b) How many floating point numbers are there in [1, .Machine\$double.xmax]? [2 marks]
 - (c) Are the number of floating point numbers in [0, 1] equal to the number of floating point numbers in 2 + [0, 1] = [2, 3]? Explain. [2 marks]
- 3. Consider the solution to x = g(x) in [0, 1] where $g(x) = \frac{1}{4}(1-x)^4$. Consider the iterations $x_{k+1} = g(x_k)$. Starting from $x_0 = \frac{1}{2}$ roughly how many iterations are necessary before we are within 10^{-6} of the solution? [4 marks]
- 4. Consider the equation $x^2 3 = 0$.
 - (a) Show, starting from $x_0 = 1$, that Newton's method converges to $\sqrt{3}$. [4 marks]
 - (b) For what values of x_0 does Newton's method converge to $\sqrt{3}$? It is enough to give a non-rigorous explanation. [2 marks]
- 5. Consider the matrix \mathbf{A} and the vector \mathbf{b} given below.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}$$

- (a) Find the QR decomposition of **A**. [4 marks]
- (b) Find the least squares solution of the system Ax = b. [2 marks]
- 6. Consider an infinitely differentiable function $f:[0,1] \to \mathbf{R}$.
 - (a) Write down the Newton-Cotes formula for $\int_0^1 f(x) dx$ with 4 equally spaced points $0 = x_0 < x_1 < x_2 < x_3 = 1$. [4 marks]
 - (b) What is the error in approximating the integral by the approximation? [2 marks]
- 7. For this problem you may use R for some of the computations.
 - (a) Find a set of points $x_0, x_1, x_2 \in [0, 1]$ such that for any $f \in \mathcal{P}_5$, the set of polynomials of degree at most 5, we have

$$\int_{0}^{1} f(x)dx = \int_{0}^{1} p_{2}(x)dx$$

where $p_2(x)$ is the Lagrange polynomial passing through the points $(x_i, f(x_i)), i = 0, 1, 2$. [5 marks]

Note: If you require to find the roots of a polynomial $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, type polyroot(z=c($a_0, a_1, a_2, \cdots, a_n$)) in R.

- (b) For any $f \in \mathcal{P}_5$ write down $\int_0^1 f(x) dx$ as a linear combination of $f(x_i)$, i = 0, 1, 2, where x_i are computed above. [3 marks]
- (c) Explain why this quadrature rule is better than the Simpson quatrature rule. [1 mark]

8. Consider the solution (x(t), y(t)), $0 \le t \le \frac{3}{4}$, to the *system* of differential equations:

$$\frac{dx}{dt} = (x+2)^2, \quad x(0) = -1, \\ \frac{dy}{dt} = x, \qquad y(0) = 0.$$

For h > 0, we use the Euler approximation :

$$x_{i+1} = x_i + h(x_i + 2)^2,$$

 $y_{i+1} = y_i + hx_i.$

with $x_0 = -1$, $y_0 = 0$ and (x_i, y_i) the approximation at the point $t_i = ih$. Show that

$$y_{\left[\frac{1}{2h}\right]+1} - y_{\left[\frac{1}{2h}\right]} = O(h^2).$$

(Above [a] denotes the integer part of a.) [4 marks]