Final - Computer Science 2 (2020-21)

Time: 3 hours.

Attempt all questions, giving proper explanations. You may quote any result proved in class without proof.

1. How is the number 22.5 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [4 marks]
2. (a) How many floating point numbers are there in $[0,1]$? [2 marks]
(b) How many floating point numbers are there in [1, Machine\$double.xmax]? [2 marks]
(c) Are the number of floating point numbers in $[0,1]$ equal to the number of floating point numbers in $2+[0,1]=[2,3]$? Explain. [2 marks]
3. Consider the solution to $x=g(x)$ in $[0,1]$ where $g(x)=\frac{1}{4}(1-x)^{4}$. Consider the iterations $x_{k+1}=g\left(x_{k}\right)$. Starting from $x_{0}=\frac{1}{2}$ roughly how many iterations are necessary before we are within 10^{-6} of the solution? [4 marks]
4. Consider the equation $x^{2}-3=0$.
(a) Show, starting from $x_{0}=1$, that Newton's method converges to $\sqrt{3}$. [4 marks]
(b) For what values of x_{0} does Newton's method converge to $\sqrt{3}$? It is enough to give a non-rigorous explanation. [2 marks]
5. Consider the matrix \mathbf{A} and the vector \mathbf{b} given below.

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 2 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right], \quad \mathbf{b}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
3
\end{array}\right)
$$

(a) Find the QR decomposition of A . [4 marks]
(b) Find the least squares solution of the system $\mathbf{A x}=\mathbf{b}$. [2 marks]
6. Consider an infinitely differentiable function $f:[0,1] \rightarrow \mathbf{R}$.
(a) Write down the Newton-Cotes formula for $\int_{0}^{1} f(x) d x$ with 4 equally spaced points $0=$ $x_{0}<x_{1}<x_{2}<x_{3}=1 . \quad[4$ marks]
(b) What is the error in approximating the integral by the approximation?
7. For this problem you may use R for some of the computations.
(a) Find a set of points $x_{0}, x_{1}, x_{2} \in[0,1]$ such that for any $f \in \mathcal{P}_{5}$, the set of polynomials of degree at most 5 , we have

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} p_{2}(x) d x
$$

where $p_{2}(x)$ is the Lagrange polynomial passing through the points $\left(x_{i}, f\left(x_{i}\right)\right), i=$ $0,1,2$. [5 marks]
Note: If you require to find the roots of a polynomial $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$, type polyroot ($\mathrm{z}=\mathrm{c}\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right)$) in R.
(b) For any $f \in \mathcal{P}_{5}$ write down $\int_{0}^{1} f(x) d x$ as a linear combination of $f\left(x_{i}\right), i=0,1,2$, where x_{i} are computed above. [3 marks]
(c) Explain why this quadrature rule is better than the Simpson quatrature rule. mark]
8. Consider the solution $(x(t), y(t)), 0 \leq t \leq \frac{3}{4}$, to the system of differential equations:

$$
\begin{array}{ll}
\frac{d x}{d t}=(x+2)^{2}, & x(0)=-1 \\
\frac{d y}{d t}=x, & y(0)=0
\end{array}
$$

For $h>0$, we use the Euler approximation :

$$
\begin{aligned}
x_{i+1} & =x_{i}+h\left(x_{i}+2\right)^{2}, \\
y_{i+1} & =y_{i}+h x_{i} .
\end{aligned}
$$

with $x_{0}=-1, y_{0}=0$ and $\left(x_{i}, y_{i}\right)$ the approximation at the point $t_{i}=i h$. Show that

$$
y_{\left[\frac{1}{2 h}\right]+1}-y_{\left[\frac{1}{2 h}\right]}=O\left(h^{2}\right) .
$$

(Above $[a]$ denotes the integer part of a.) [4 marks]

